

SPECIFICATION AGM 4004B-208

Revise Date	Page	Content	Modified By
2017-09-13		First Issued	
		2017-09-13	2017-09-13 First Issued Image:

Issued Date: 2017.09.13 **Doc. No.:** QP-001-027/B0

Table of Contents

No.	Contents	Page
1. FEA	TURES	4
2. MEC	CHANICAL SPECIFICATIONS	4
3. ELE	CTRICAL SPECIFICATIONS	4
4. TER	MINAL FUNCTIONS AND BLOCK DIAGRAM	6
5. TIM	ING CHARACTERISTICS	7
6. CON	AMAND LIST	10
7.CHA	RACTER GENERATOR ROM	11
8. QUA	ALITY SPECIFICATIONS	12
9. REL	JABILITY	17
10. HA	NDLING PRECAUTION	18
11. OU	TLINE DIMENSION	19

1. Features

The features of LCD are showed as follows

- * Display mode : STN/Yellow-Green/Transflective/Positive/Anti-UV
- * Controller IC : UCI7066-01 (English-Japanese)
- * Display format : 40X4Characters
- * Interface Input Data : 8 bit or 4bit MPU
- * Driving Method : 1/16Duty, 1/5Bias
- * Viewing Direction : 6 O'clock
- * Backlight : LED Unit /Yellow-Green/Bottom

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	190(H) x54(V) x14MAX(D)	mm
Viewing Area	149(H) x 30(V)	mm
Activity Display Area	140.45(H)x23.16(V)	mm
Character Font	5x8 Dots	-
Character Size	2.78(H)x4.89(V)	mm
Character Pitch	3.53(H)x6.09(V)	mm
Dot Size	0.50(H)x0.55(V)	mm
Dot Pitch	0.57(H)x0.62(V)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage For Logic	V _{DD}	0.3	-	7.0	V
Supply Voltage For LCD Drive	V _{LCD}	V _{DD} -15	-	V _{DD} +0.3	V
Input Voltage	Vin	-0.3	-	V _{DD} +0.3	V
Operating Temp.	Тор	-20	-	+70	°C
Storage Temp.	Tst	-30	-	+80	°C

*. NOTE: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

3-2 ELECTICAL CHARACTERISTICS

ltem	ltem		Test Condition	Min.	Тур.	Max.	Unit
Logic supply	Voltage	Vdd – Vss	Ta = 25 °C	4.5	5.0	5.5	V
LCD Dri	LCD Drive			4.2	4.5	4.8	V
Input Voltage	"H" Level	V _{IH}	V _{DD} =5V≞5%	0.7VDD	-	V_{DD}	V
	"L" Level	V IL		-0.3	-	0.6	V
Frame Freq	Frame Frequency			-	78.1	-	Hz
Current Cons	umption	I _{DD}		-	3.3	-	mA

3-3.BACKLIGHT

3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF		-	-	500	mA
Reverse Voltage	VR	Ta = 25 0C	-	-	10	V
Power Dissipation	PD		-	5000	-	mW

3-3-2.Electrical-optical Characteristics

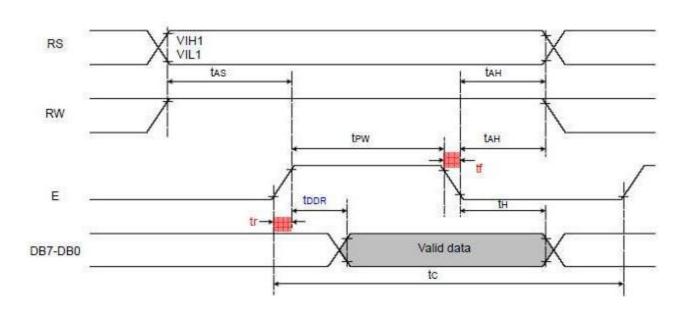
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF	Ta = 25 %C	4.0	4.2	4.4	V
Peak wavelength	λΡ	lf=500mA	568	572	575	nm

The brightness is measured without LCD panel

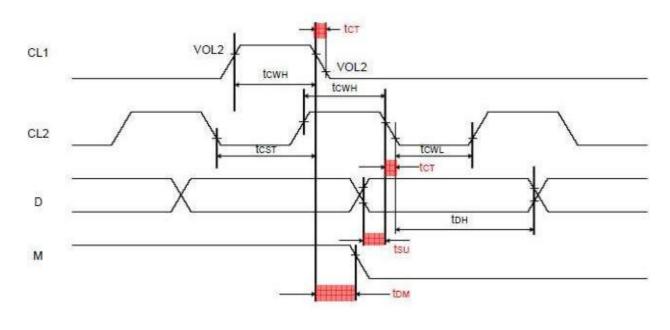
For operation above 25 $^{\circ}$ C, The Ifm Ifp &Pd must be derated,the current derating is -0.36mA/ $^{\circ}$ C for DC drive and -0.86 mA/ $^{\circ}$ C for Pulse drive, the Power dissipation is -0.75mW/ $^{\circ}$ C.

The produt working current must not more than the 60% of the Ifm or Ifp according to the working temperature

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM


4-1 INTERFACE PIN FUNCTION DESCRIPTION

PIN NO.	SYMBOL	FUNCIONS
1-8	DB7~DB0	8 Bit Data Bus
9	E1	Chip selection signal
10	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
11	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
12	V0	Supply voltage for LCD driving
13	VSS	Ground
14	VDD	Supply voltage for logical circuit
15	E2	Chip selection signal
16	N/C	Not Connect
17	LEDA	Backlight (+5.0)
18	LEDK	Backlight(-)


4-2 BLOCK DIAGRAM

5. TIMING CHARACTERISTICS

5-1 Reading data from UCI7066U to MPU

5-2 Writing data from MPU to UCI7066U

5-3 With External Driver - tor VOL2 CL1 VOL2 tcwH tcwH CL2 tost tcwi tor D **t**DH tsu M **t**DM **5-4 Power Supply Conditions** tPW 0.8VDD VDD ---- 0.2Vpp

	 - 0.29
DB7~0	 -
RS	 -
R/W	
Е	

Symbol	Characteristics	Description	Min	Тур.	Max.	Unit
tPOR	Power Rise time	Power rise time that will trigger internal POR circuit	0.1		100	mS
tIOL	I/O Low time	The period that I/O is kept LOW	40			mS
tPW	Enable Pulse width	Please refer to the following	tables			

Issued Date: 2017.09.13 **Doc. No.:** QP-001-027/B0

5-5 Parameter

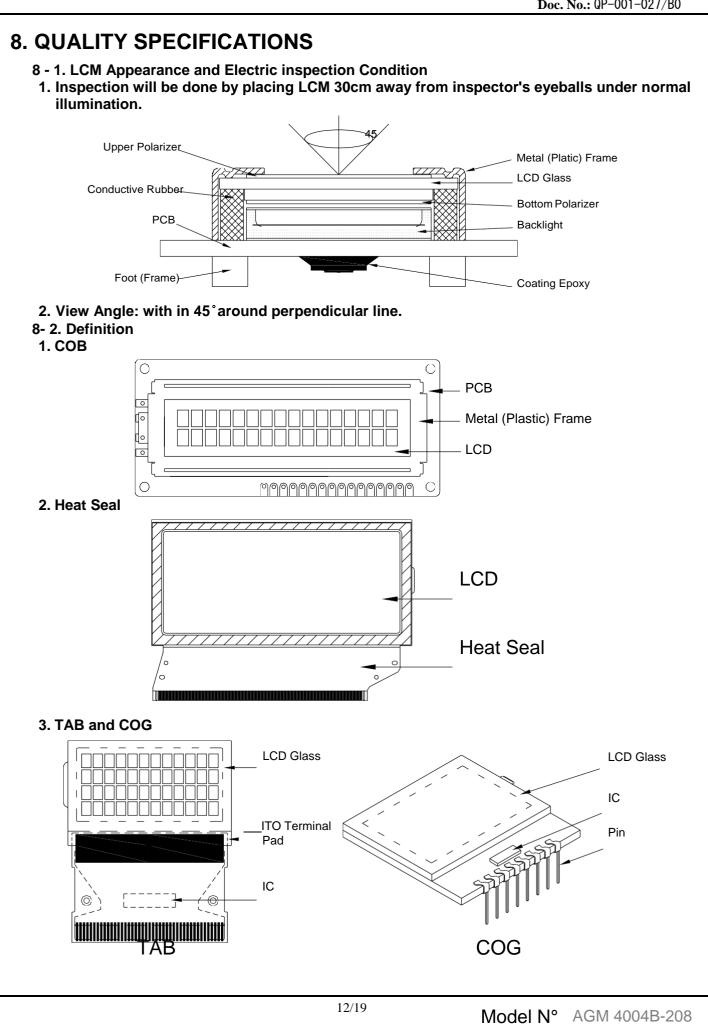
Ta = 25°C, Vcc=4.5V~5V

Symbol	Characteristic	Test Condition	Min.	Тур.	Max.	Unit
Internal Clock	k Operation			1		Ŷ.
fosc	OSC Frequency	R=91KΩ	190	270	350	KHz
External Cloc	k Operation	Y)			All Parks	
fex	External Frequency	12	125	270	410	KHz
	Duty Cycle		45	50	55	%
tR, tF	Rising/Falling Time	-	-	122	0.2	uS
Write Mode (I	MPU writes data to UCi7066)		20) 20	// //	9 9	8 18
tc	Enable Cycle Time	Pin E	1200	-		nS
tpw	Enable Pulse Width	Pin E	140	38	-	nS
tR, tF	Rising/Falling Time	Pin E	-	35	25	nS
tas	Address Setup Time	Pin: RS, RW, E	0	36	+	nS
tан	Address Hold Time	Pin: RS, RW, E	10	35	-	nS
tosw	Data Setup Time	Pin: DB7~DB0	40	3 6		nS
tн	Data Hold Time	Pin: DB7~DB0	10	35		nS
Read Mode (I	MPU reads data from UCi706	6)	24	at N		66 66
tc	Enable Cycle Time	Pin E	1200	5		nS
tpw	Enable Pulse Width	Pin E	140	-	-	nS
tR, tF	Rising/Falling Time	Pin E	57	5	25	nS
tas	Address Setup Time	Pin: RS, RW, E	0	4	-	nS
tah	Address Hold Time	Pin: RS, RW, E	10	55		nS
toor	Data Setup Time	Pin: DB7~DB0	-	12	100	nS
tH	Data Hold Time	Pin: DB7~DB0	10	1.55	-	nS
Interface Mod	le with LCD Driver (UCi7065)		1K	2		
tсwн	Clock Pulse Width, High	Pin: CL1, CL2	800	-	-	nS
towL	Clock Pulse Width, Low	Pin: CL1, CL2	800	14	- <u>-</u>	nS
tcsT	Clock Setup Time	Pin: CL1, CL2	500	÷		nS
tsu	Data Setup Time	Pin: D	300	122	<u></u>	nS
toн	Data Hold Time	Pin: D	300	1		nS
tom	M Delay Time	Pin: M	0	122	2000	nS

6. COMMAND LIST

#	Command	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Action
1	Clear Display	0	0	0	0	0	0	0	0	0	1	Clear the screen
2	Return Home	0	0	0	0	0	0	0	0	1	£	Move cursor to HOME
3	Set Entry Mode	0	0	0	0	0	0	0	1	I/D	S	I/D: Left / Right S: Shift OFF/ON
4	Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D: Display OFF / ON C: Cursor OFF / ON B: Blink OFF / ON
5	Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	ä		S/C: Screen / Cursor R/L Right / Left
6	Set Function	0	0	0	0	1	DL	N	F		3	DL: 4-bit / 8-bit, N: 1-line / 2-line F: 5x8 / 5x11
7	Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	
8	Set DDRAM address	0	0	1	AC12	AC11	AC10	AC9	AC8	AC7	AC6	
9	Read Busy Flag and address	0	1	BF	AC19	AC18	AC17	AC16	AC15	AC14	AC13	
10	Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to RAM
11	Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from RAM
8					For	\$8/\$9	Mode				аранан (т. 1997) 1957 — 19	*
12	Status Read	1	1	0	0	0	0	0	0	0	0	Read status
12	Status Read	0	1	BF	AC19	AC18	AC17	AC16	AC15	AC14	AC13	

The following is a list of host commands supported by UCi7066


Note:

Ensure that UCi7066 is not in the BUSY state (BF = 0) before sending an instruction from the MPU to the UCi7066. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself.

7. CHARACTER GENERATOR ROM

Upper 4 bits Lower 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	
0000						P		-					-57			
0001				1									Ħ			
0010				2			Ŀ					-1				
D011							c.									
0100				-				t.			•					
0101																
0110							T	•							p	
0111							-				77		26			
1000			C					**			-1					
1001							1					1				
1010							-								J	
1011								£			**					
1100														C.C.C	-	
1101								2								
1110											-					
1111																

8-3. Sampling Plan and Acceptance

1. Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2.Acceptance

Major defect:	AQL = 0.25%
Minor defect:	AQL = 0.65%

8-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift soldering pad	X < 3/4Z Y > 1/3D	Reject
Minor	Component tilt component v v v v v v v	Y > 1/3D	Reject
Minor	Insufficient solder component PAD PCB	<i>θ</i> ≤ 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	Ir	nspection Standa	rds
Major	Crack / breakage	Any	where	Reject
		W	L	Acceptable of Scratch
		w<0.1mm	Any	Ignore
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2
Minor	Frame Scratch	0.2 <w<0.3mm< td=""><td>L<3.0mm</td><td>1</td></w<0.3mm<>	L<3.0mm	1
		w>0.3mm	Any	0
		with distance gr	criteria applicable t eater than 5mm. on the back side of gnored.	
			<u> </u>	Acceptable of Dents / Pricks
		⊕ <u><</u>	1.0mm	2
	Frame Dent , Prick	1.0<4	⊃ <u><</u> 1.5mm	1
Minor	$\Phi = \frac{L + W}{2}$	1.5r	nm< Φ	0
	2	/ pricks with dis	criteria applicable tance greater than ck on the back side gnored	5mm
Minor	Frame Deformation	Excee	d the dimension of	drawing
Minor	Metal Frame Oxidation		Any rust	

4. Flexible Film Connector (FFC)

Defect	Insp	ection Item	Inspection Standa	rds
Minor	Tilte	d soldering	Within the angle +5°	Acceptable
Minor	Uneven s	older joint /bump		Reject
			Expose the conductive line	Reject
Minor	Hole	$\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject
Minor	_ <u>↓</u> _↓_ _	sition shift → ←↓- - ↓	Y > 1/3D	Reject
	X X		X > 1/2Z	Reject

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal 、 TCP 、 FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ > 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift $Y = \frac{1}{2}$	Y > 1/3D	Reject
WIITO		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards	
		Acceptable number of units	
		⊕ <u><</u> 0.10mm	ignore
		0.10<⊕ <u><</u> 0.15mm	2
Minor	LED dirty, prick	0.15<⊕ <u><</u> 0.2mm	1
		⊕>0.2mm	0
		The distance between any two spots should be \geq Any spot/dot/void outside of viewing area is accept	
Minor	Protective film tilt	Not fully cover LCD	Reject
Major	COG coating	Not fully cover ITO circuit	Reject

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

9. Inspection Specification of LCD

Defect	Insp	pect Item		Inspection	n Standards	
		* Glass Scratch	W L	W<0.03 L<5	0.03 <w<0.05 L<3</w<0.05 	W>0.05
Minor	Linear Defect	 * Polarizer Scratch * Fiber and Linear 	ACC. NO.	1	1	Any Reject
		material * Foreign material between glass and A	Note Φ	L is the length and V $\Phi \leq 0.1 0.1 < \Phi \leq 0.1$ 3EA /	V is the width of the 0.15 0.15<⊕ <u><</u> 0.2	e defect ⊕>0.2
	Black Spot and	polarizer or glass	NO.	100mm ² 2	1	0
Minor	Polarizer Pricked	and glass * Polarizer hole or protuberance by external force	NOIE	Φ is the average dia Distance between tw		
		* Unobvious	Φ	⊕ <u><</u> 0.3	0.3<⊕ <u><</u> 0.5	0.5 <⊕
	White Spot	transparent foreign material between glass and glass or	NO.	3EA / 100mm ²	1	0
Minor	and Bubble in polarizer	glass and polarizer		$\Phi~$ is the average di	ameter of the defeo	ct.
		 Air protuberance N between polarizer and glass 	lote	Distance between tv	vo defects > 10mm	
		L	Φ	⊕ <u><</u> 0.10 0.10<⊕ <u><</u>	<u><</u> 0.20 0.20<⊕ <u><</u> 0.2	25 ⊕>0.25
		ww	ACC. NO.	3EA / 2 100mm ²	1	0
Minor	Segment Defect	w		W is more than 1/2 s	segment width	Reject
		 	Note	$\Phi = \frac{L + W}{2}$ Distance between tw	vo defect is 10mm	
		L	Φ	⊕ <u><</u> 0.10 0.10<⊕ <u><</u>	<u><</u> 0.20 0.20<⊕ <u><</u> 0.2	5 0>0.25
Minor	Protuberant	w	W	Glue W <u>≤</u> 1/2 W<0.		^g Ignore
	Segment	$\Phi = (L + W) / 2$	ACC. NO.	3EA / 2 100mm ²	1	0
			1. Seg E		0.4 <b<u><1.0mm</b<u>	B>1.0mm
Minor	Assembly		B. Juc	-A B-A<1/2B dge Acceptable		B-A<0.25 Acceptable
	Mis-alignment	в А				
	U		2. Dot	Matrix		
				rmation>2° /19	Model N°	Reject AGM 400

Model N° AGM 4004B-208

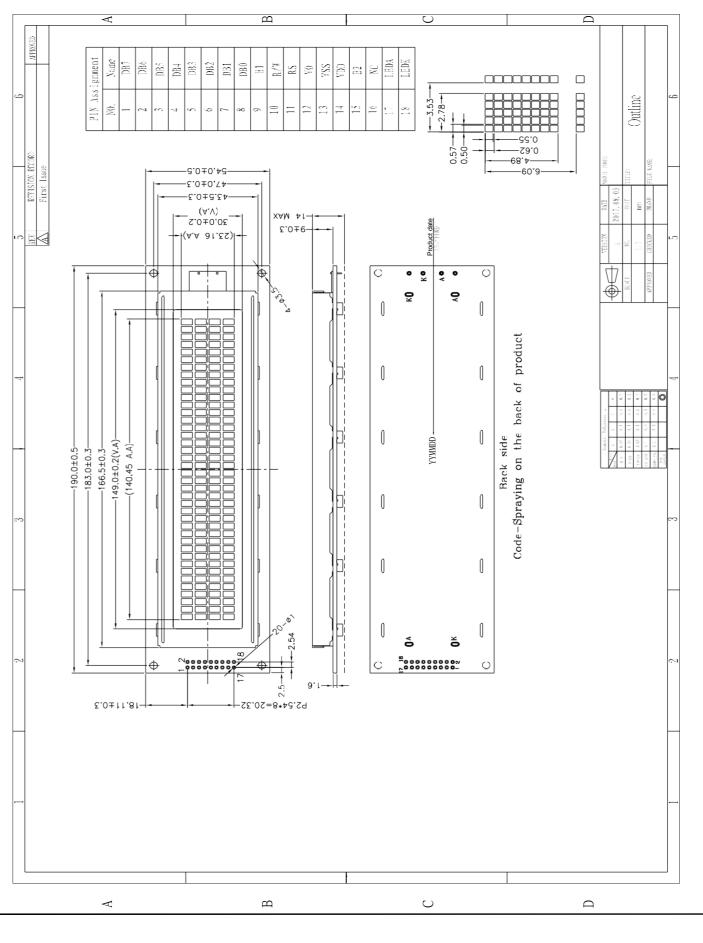
Minor	Stain on LCD		a simi	t when stair lar one. Ot	herwise, j	udged acc	ording to	the above
	Panel Surface		items.	ыаск spo		ine Spor		
							_	
						_		
					1			
		+						
		\bigwedge			r			
		X X						
		↓ ↓ ↓ ↓ ↓ ⊅. .						

9. RELIABILITY

No	Item	Condition	Quantity	Criteria
1	High Temperature Operating	70°C, 96Hrs	2	GB/T2423.2 -2008
2	Low Temperature Operating	-20°C, 96Hrs	2	GB/T2423.1 -2008
3	High Humidity	60℃, 90%RH, 96Hrs	2	GB/T2423.3 -2006
4	High Temperature Storage	80°C, 96Hrs	2	GB/T2423.2 -2008
5	Low Temperature Storage	-30℃, 96Hrs	2	GB/T2423.1 -2008
6	Thermal Cycling Test	-20°C, 60min~70°C, 60min, 20 cycles.	2	GB/T2423.2 2 -2012
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X,Y,Z 30 min for each direction.	2	GB/T5170.1 4 -2009
8	Electrical Static Discharge	Air: \pm 8KV 150pF/330 Ω 5 times	2	GB/T17626. 2 -2006
		Contact: ± 4 KV 150pF/330 Ω 5 times		
9	Drop Test (Packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces.	2	GB/T2423.8 -1995

Note:1) Above conditions are suitable for our company standard products. 2) For restrict products, the test conditions listed as above must be revised.

10. HANDLING PRECAUTION


- (1) Mounting Method
 - The panel of the LCD Module consists of two thin glass plates with polarizers, which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.
- (2) Caution of LCD handling & cleaning
 - When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.
 - Isopropyl alcohol
 - Ethyl alcohol
 - Tricolor trifler thane
 - Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:
 - Water
 - Kenton
 - Aromatics
- (3) Caution against static charge
 - The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.
- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration. Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's .which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - -A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40 C, 50% RH or less is required.
- (6) Storage
 - In the case of storing for a long period of time, (For years) for the purpose or replacement use, the following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
 - Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
 - Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later. When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

Issued Date: 2017.09.13 **Doc. No.:** QP-001-027/B0

11. OUTLINE DIMENSION

NOTE: The dimension with"()" is reference

