

AGTechnologies

SPECIFICATION AGM 0035WT

Atualizado pelo MKT em 29/10/2015

1

	AGT echn	ologie	MODLE NO : AGM 0035WT
REC	ORDS OF REV	ISION	DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2013/09/09		First issue
А	2014/09/23		Add size & Surface.
			Modify Pixel Data Format
			& Block Diagram &
В	2015/04/14		Package Specification. Add Resistance Touch Panel General Specifications.
С	2015/04/27		Modify Reliability.

Contents

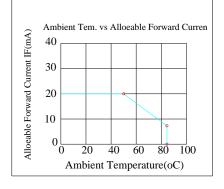
- 1.Summary
- 2. General Specification
- 3. Absolute Maximum Ratings
- **4.**Electrical Characteristics
- **5.DC Characteristics**
- **6.Interface Timing Characteristics**
- 7. Optical Characteristics
- 8.Interface
- 9.Block Diagram
- 10.Reliability
- 11. Touch Panel Information
- 12.Contour Drawing
- 13.Initial Code For Reference

1.Summary

This technical specification applies to 3.45' color TFT-LCD panel. The 3.45' color TFT-LCD panel is designed for camcorder, digital camera application and other electronic products which require high quality flat panel displays. This module follows RoHS.

2.General Specifications

Item	Dimension	Unit
Size	3.5	inch
Dot Matrix	320 x RGBx240(TFT)	dots
Module dimension	93.5 x 66.44 x 8.4	mm
Active area	70.08 x 52.56	mm
Dot pitch	0.073 x 0.219	mm
LCD type	TFT, Normally White, Transmissive	
View Direction	12 o'clock	
Gray Scale Inversion Direction	6 o'clock	
Backlight Type	LED ,Normally White	
Controller IC	SSD1963	
Interface	Digital 8080 family MPU	
With /Without TP	With RTP	
Surface	Anti-Glare	


*Color tone slight changed by temperature and driving voltage.

3.Absolute Maximum Ratings

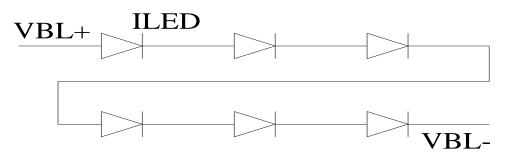
Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	ТОР	-20		+70	°C
Storage Temperature	TST	-30		+80	°C

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. $\leq 60^{\circ}$ C, 90% RH MAX. Temp. $> 60^{\circ}$ C, Absolute humidity shall be less than 90% RH at 60° C

4.Electrical Characteristics

4.1. Operating conditions:


Item	Symbol	Condition	Min	Тур	Max	Unit	Remark
Supply Voltage For LCM	VDD	-	3.0	3.3	3.6	V	-
Power Supply For LCM	IDD	-	-	310	470	mA	Note1
Power Consumption	-	-	-	1020	1690	mW	VDD=3.3V

Note 1 : This value is test for VDD=3.3V , Ta=25 $\,\,^\circ\!\mathrm{C}\,$ only

4.2. LED driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current	-	-	20	-	mA	-
Power Consumption	-	348	384	408	mW	-
LED voltage	VBL+	17.4	19.2	20.4	V	Note 1
LED Life Time	-	-	50,000	-	Hr	Note 2,3,4

Note 1 : There are 1 Groups LED

Note 2 : Ta = 25 $^{\circ}C$

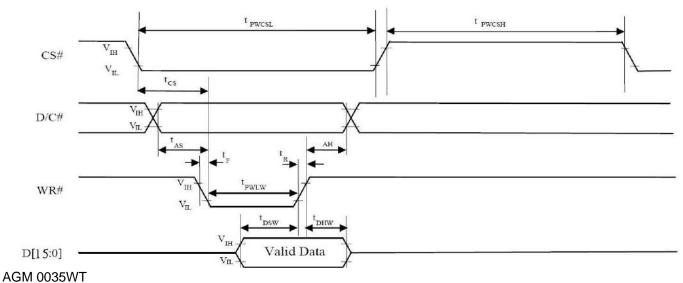
Note 3 : Brightness to be decreased to 50% of the initial value

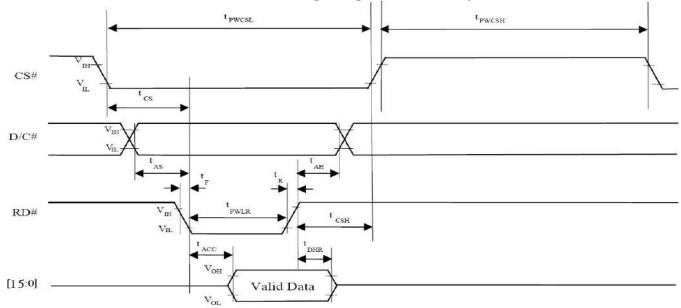
Note 4 : The single LED lamp case

5.DC CHARATERISTICS

Parameter	Symbol		Rating	Unit	Condition	
	Symbol	Min	Тур	Max	Omt	Condition
Low level input voltage	VIL	0	-	0.3VDD	V	
High level input voltage	VIH	0.7VDD	-	VDD	V	

6.Interface timing


6.1. 8080 Mode


The 8080 mode MCU interface consist of CS#, D/C#, RD#, WR#, Data bus. This interface use WR# to define a write cycle and RD# for read cycle. If the WR# goes low when the CS# signal is low, the data or command will be latched into the system at the rising edge of WR#. Similarly, the read cycle will start when RD# goes low and end at the rising edge of RD#.

Symbol	Parameter	Min	Тур	Max	Unit
fMCLK	System Clock Frequency	1	_	110	MHz
tMCLK	System Clock Period	1/ fMCLK	_	_	ns
tPWCSH	Control Pulse High Width Write Read	13 30	1.5* tMCLK 3.5* tMCLK	_	ns
tPWCSL	Control Pulse Low Width Write (next write cycle) Write (next read cycle) Read	13 80 80	1.5* tMCLK 9* tMCLK 9* tMCLK		ns
tAS	Address Setup Time	1	_		ns
tAH	Address Hold Time	2	_		ns
tDSW	Write Data Setup Time	4	_	_	ns
tDHW	Write Data Hold Time	1	_	_	ns
tPWLW	Write Low Time	12	_		ns
tDHR	Read Data Hold Time	1	_		ns
tACC	Access Time	32	_		ns
tPWLR	Read Low Time	36	_		ns
tR	Rise Time	_	_	0.5	ns
tF	Fall Time			0.5	ns
tCS	Chip select setup time	2	_	_	ns
tCSH	Chip select hold time to read signal	3		_	ns

6.2. 8080 Mode Write Cycle

6.3. Parallel 8080-series Interface Timing Diagram(Write Cycle)

6.4. Parallel 8080-series Interface Timing Diagram (Read Cycle)

6.5. Pixel Data Format

Interface	Cycle	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
16 bits (565 format)	1 st	R5	R4	R3	R2	R1	G5	G4	G3	G2	G1	GO	B5	B4	B3	B2	B1
	1 st	R7	R6	R5	R4	R3	R2	R1	RO	G7	G6	G5	G4	G3	G2	G1	GO
16 bits	2 nd	B7	B6	B5	B4	B3	B2	B1	B0	R7	R6	R5	R4	R3	R2	R1	RO
	3 rd	G7	G6	G5	G4	G3	G2	G1	GO	B7	B6	B5	B4	B3	B2	B1	B0
	1 st									R7	R6	R5	R4	R3	R2	R1	RO
8 bits	2 nd									G7	G6	G5	G4	G3	G2	G1	GO
	3 rd									B7	B6	B5	B4	B3	B2	B1	B0

7.Optical Characteristics

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark				
Response time		Tr	Tr $\theta = 0^{\circ} \cdot \phi = 0^{\circ}$		$\frac{\text{Tr}}{100000000000000000000000000000000000$		$\theta = 0^{\circ} \cdot \phi = 0^{\circ}$		10	-	ms	Note 3,5
Response time		Tf	$0 = 0 + \mathbf{\Psi} = 0$	-	15	-	ms	Note 3,5				
Contrast ratio		CR	At optimized viewing angle	300	350	-	-	Note 4,5				
Color Chromaticity	White	White	Wx	θ =0° 、 Φ =0	0.26	0.31	0.36	-	Note 2,6,7			
Color Chromaticity	white	Wy $\theta = 0 \lor \Psi = 0$	$\Theta = \Theta \cdot \Psi = 0$	0.28	0.33	0.38	-	-				
	Hom	ΘR ΘL	CD > 10	-	55	-						
Viewing angle	Hor.			-	55	-		Note 1				
(Gray Scale Inversion Direction)	Ver.	ΦT	$CR \ge 10$	-	45	-	Deg.	Note 1				
Direction	ver.	ΦB		-	50	-						
Brightness	•	-	-	250	300	-	cd/m ²	Center of display				

Ta= $25\pm2^{\circ}$ C, IL=20mA

Note 1: Definition of viewing angle range

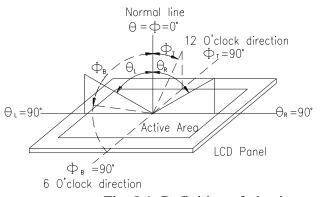


Fig. 8.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7orBM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

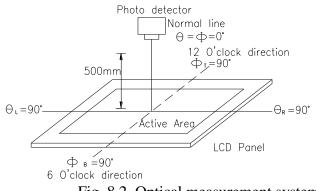
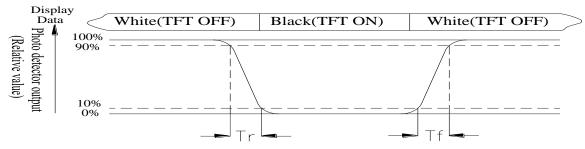



Fig. 8.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

 $Contrast ratio (CR) = \frac{Luminance measured when LCD on the "White" state}{Luminance measured when LCD on the "Black" state}$

Note 5: White $Vi = Vi50 \pm 1.5V$

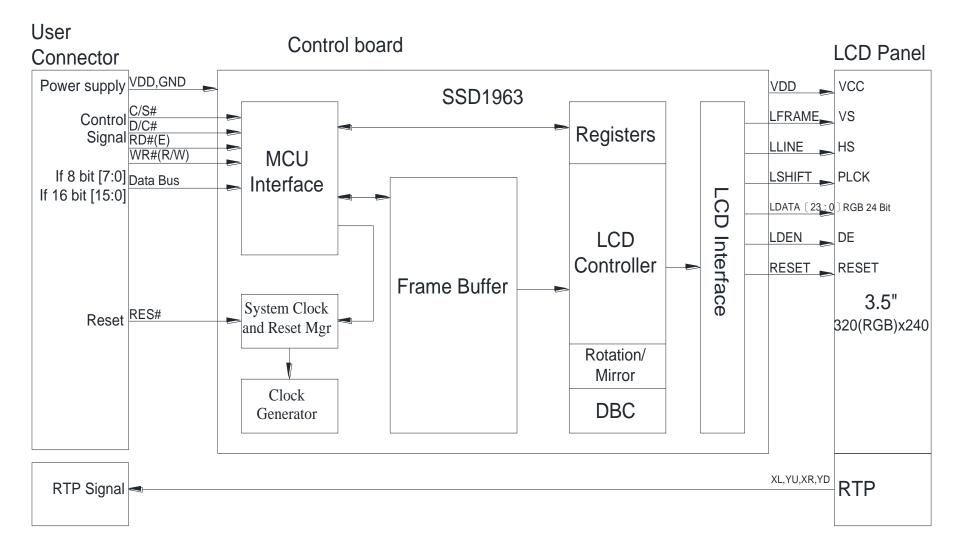
Black Vi = Vi50 \pm 2.0V

"±" means that the analog input signal swings in phase with VCOM signal.

"±" means that the analog input signal swings out of phase with VCOM signal.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD


Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

8.Interface

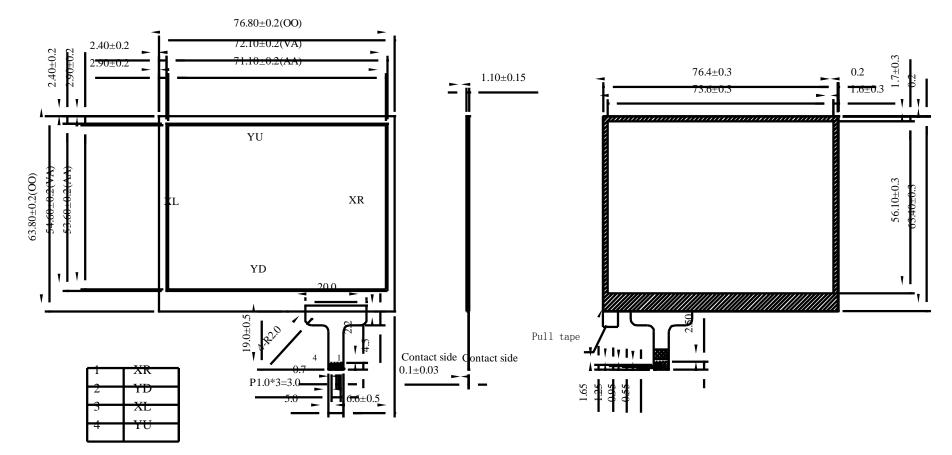
8.1. LCM PIN Definition

Pin	Symbol	Function	Remark
1	GND	System ground pin of the IC. Connect to system ground.	
2	VDD	Power Supply : +3.3V	
3	BL_E	Backlight control signal , H: On \ L:Off	
4	D/C	Data/Command select	
5	WR	Write strobe signal	
6	RD	Read strobe signal	
7	DB0	Data bus	
8	DB1	Data bus	
9	DB2	Data bus	
10	DB3	Data bus	
11	DB4	Data bus	
12	DB5	Data bus	
13	DB6	Data bus	
14	DB7	Data bus	
15	CS	Chip select	
16	RES	Hardware reset	
17	NC	No connect	
18	NC	No connect	
19	NC	No connect	
20	NC	No connect	

9. Block Diagram

10.Reliability

Content of Reliability Test (Wide temperature, $-20^{\circ}C \sim 70^{\circ}C$)

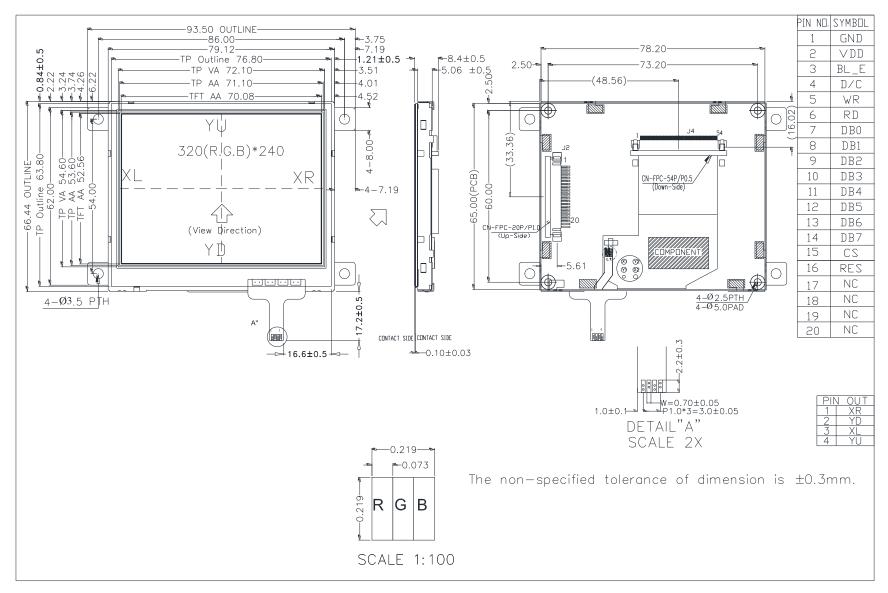

Environmental Test			
Test Item	Content of Test	Test Condition	Note
High Temperature	Endurance test applying the high storage	80°C	2
storage	temperature for a long time.	200hrs	
Low Temperature	Endurance test applying the low storage	-30°C	1,2
storage	temperature for a long time.	200hrs	
High Temperature	Endurance test applying the electric stress	70°C	
Operation	(Voltage & Current) and the thermal stress to the	200hrs	
	element for a long time.		
Low Temperature	Endurance test applying the electric stress under	-20°C	1
Operation	low temperature for a long time.	200hrs	
High Temperature/	The module should be allowed to stand at 60	60°C,90%RH	1,2
Humidity Operation	°C ,90%RH max	96hrs	
Thermal shock	The sample should be allowed stand the	-20°C/70°C	
resistance	following 10 cycles of	10 cycles	
	operation		
	-20°C 25°C 70°C		
	30min 5min 30min		
	1 cycle		
Vibration test	Endurance test applying the vibration during	Total fixed	3
	transportation and using.	amplitude : 15mm	
		Vibration	
		Frequency :	
		10~55Hz	
		One cycle 60	
		seconds to 3	
		directions of X,Y,Z for Each 15	
		minutes	
Static electricity test	Endurance test applying the electric stress to the	VS=800V,	
Static electricity lest	terminal.	VS=800V, RS=1.5k Ω	
	terminut.		
		1	
		CS=100pF 1 time	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

11.Touch Panel Information


Non-Proper Ways to handle the touch screen

- 1. Do not pull or crease the tail of the touch screen.
- 2. Tails, unless the drawing calls out for a bend, are to be free of permanent creases in the polyester, slight crease lines in the adhesive tail

Item	Description
Driving condition	DC5V
Operating force	60~150g
Linearity max	≤±1.5%
Insulating resistance	$> 20 M\Omega$, $25 V(DC)$
Light transparence	70%
Structure type	ITO Film/ITO Glass(F/G)
Surface Hardness	3H typ
Pen Hitting Durability (with the silicon rubber)	>1000,000 times
X resistance	200~1100Ω
Y resistance	200~1100Ω

11.1. Resistance Touch Panel General Specifications

12.Contour Drawing

13.Initial Code For Reference

void Initial_SSD1963()
{

Write_Command(0x01); Delay_ms(10); Write_Command(0xe0); Write_Parameter(0x01); Delay_ms(5); Write_Command(0xe0); Write_Parameter(0x03); Delay_ms(5);

Write_Command(0xb0); Write_Parameter(0x0c); Write_Parameter(0x80); Write_Parameter(0x01); Write_Parameter(0x3f); Write_Parameter(0x00); Write_Parameter(0x00);

Write_Command(0xf0); Write_Parameter(0x00);

Write_Command(0xe2); Write_Parameter(0x1d); Write_Parameter(0x02); Write_Parameter(0x54);

Write_Command(0xe6); Write_Parameter(0x00); Write_Parameter(0xdd); Write_Parameter(0xde);

Write_Command(0xb4); Write_Parameter(0x01); Write_Parameter(0x98); Write_Parameter(0x00); Write_Parameter(0x44); Write_Parameter(0x14); Write_Parameter(0x00); Write_Parameter(0x00);

Write_Command(0xb6); Write_Parameter(0x01); Write_Parameter(0x06); Write_Parameter(0x00); Write_Parameter(0x12); Write_Parameter(0x04); Write_Parameter(0x00); Write_Parameter(0x00);

Write_Command(0x2a); Write_Parameter(0x00); Write_Parameter(0x00); Write_Parameter(0x01); Write_Parameter(0x3f);

Write_Command(0x2b); Write_Parameter(0x00); Write_Parameter(0x00); Write_Parameter(0x00); Write_Parameter(0xef);

Write_Command(0x29);
Write_Command(0x2c);

}